Inhibition of spermidine formation in rat liver and kidney by methylglyoxal bis(guanylhydrazone).
نویسنده
چکیده
The effect of methylglyoxal bis(guanylhydrazone), a substance known to inhibit putrescine-dependent S-adenosyl-l-methionine decarboxylase, on polyamine metabolism in liver and kidney was investigated. Almost complete inhibition of the incorporation of putrescine into spermidine was obtained up to 8h after administration of 80mg of methylglyoxal bis(guanylhydrazone)/kg body wt. by intraperitoneal injection. However, by 20h after administration of the inhibitor spermidine synthesis was resumed. Considerable accumulation of putrescine occurred during this period (up to 3 times control concentrations in both tissues), but there was only a slight fall in the spermidine content. These results suggest that the putrescine-activated S-adenosyl-l-methionine decarboxylase plays an essential role in spermidine biosynthesis in rat liver and kidney, and the possibility of using methylglyoxal bis(guanylhydrazone) to study the role of polyamine synthesis in growth is discussed.
منابع مشابه
Effect of methylglyoxal bis(guanylhydrazone) on polyamine metabolism in normal and regenerating rat liver and rat thymus.
1. Injections of sublethal doses of methylglyoxal bis(guanylhydrazone), a potent inhibitor of putrescine-activated S-adenosylmethionine decarboxylase in vitro, resulted after a few days in an immense increase in the activity of S-adenosylmethionine decarboxylase in normal and regenerating rat liver and in rat thymus. The increase in the activity of S-adenosylmethionine decarboxylase was at leas...
متن کاملInhibition of S-adenosylmethionine decarboxylase and diamine oxidase activities by analogues of methylglyoxal bis(guanylhydrazone) and their cellular uptake during lymphocyte activation.
Several congeners of methylglyoxal bis(guanylhydrazone) were tested for their ability to inhibit eukaryotic putrescine-activated S-adenosylmethionine decarboxylase (EC 4.1.1.50) and intestinal diamine oxidase (EC 1.4.3.6). All the compounds tested, namely methylglyoxal bis(guanylhydrazone), ethylglyoxal bis(guanylhydrazone), dimethylglyoxal bis(guanylhydrazone) and the di-N"-methyl derivative o...
متن کاملSuppression of the formation of polyamines and macromolecules by DL-alpha-difluoromethylornithine and methylglyoxal bis(guanylhydrazone) in phytohaemagglutinin-activated human lymphocytes.
1. The activation of human peripheral blood lymphocytes by phytohaemagglutinin in vitro was accompanied by striking increases in the concentrations of the natural polyamines putrescine, spermidine and spermine. 2. The enhanced accumulation of polyamines could be almost totally abolished by dl-alpha-difluoromethylornithine, a newly discovered irreversible inhibitor of l-ornithine decarboxylase (...
متن کاملPurification of rat liver S-adenosyl-L-methionine decarboxylase.
The amount of S-adenosyl-l-methionine decarboxylase present in rat liver was enhanced 17-fold by administration of methylglyoxal bis(guanylhydrazone),* a specific inhibitor of the enzyme. The enzyme was purified 1400-fold in 50% yield from such liver extracts by chromatography on columns of the inhibitor bound to Sepharose. The purified enzyme had no spermidine synthetase activity.
متن کاملDifferential effects of 2-difluoromethylornithine and methylglyoxal bis(guanylhydrazone) on the testosterone-induced growth of ventral prostate and seminal vesicles of castrated rats.
2-Difluoromethylornithine totally prevented any increases in putrescine and spermidine concentrations in the ventral prostate of castrated rats during a 6-day testosterone treatment. Prostatic ornithine decarboxylase activity was inhibited by 80%, whereas S-adenosylmethionine decarboxylase was stimulated by more than 9-fold. In seminal vesicle, the inhibition of putrescine and spermidine accumu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 132 3 شماره
صفحات -
تاریخ انتشار 1973